S GRINN

Grinn AstraSOM-1680
CPU vs NPU Performance

1 Introduction

2 Testing Methodology

3 Benchmark Results
3.1 CPU Execution (XNNPACK delegate)
3.2 NPU Execution (TIM-VX delegate)

4 CPU vs. NPU Performance Comparison

NPU vs. CPU Power consumption
5.1 Testing Methodology

Key Findings and Recommendations

woo'jeqo|bh-uutibh-mmm

Conclusion

1 Introduction

This document presents a comparative analysis of inference performance
on the Grinn AstraSOM-1680 System-on-Module. The evaluation was conducted
using the benchmark model tool, commonly employed for assessing inference

times of machine learning models.

The primary focus was to assess whether the CPU or NPU is better suited for running the inference of the model
responsible for Automatic Number Plate Recognition (ANPR), a critical component of Grinn’s vehicle access system.
Grinn’s new project aims to revolutionize vehicle access systems for high-traffic areas such as office complexes.
Traditional access control systems, such as card-based gate openers, become inefficient in environments where hundreds of
vehicles enter and exit daily. Grinn’s solution leverages Edge Al technology to streamline the process, ensuring a faster
and more user-friendly experience. By automating license plate recognition, the system minimizes the need for manual

intervention, allowing for seamless vehicle entry and exit, particularly valuable during peak hours.

The implementation of this system significantly improves both security and efficiency. By eliminating the need

for physical access cards, the likelihood of unauthorized access due to stolen or lost credentials is mitigated.

POWER_IN - power supply 24V OUTPUT 1 - binary output
INPUT 1 - binary input (potential-free contact)
POWER_IN
OUTPUT1
INPUT1 PCB
CAM
g
o

Communication via WiFi
Housing handles

Camera

NWYO

S GRINN wwwgrinn-global.com

2 | Testing Methodology

The evaluation process involved recording execution times for both CPU and NPU processing. The model used for
benchmarking was yolov5s-int8.tflite, executed within the TensorFlow Lite (TFLite Runtime) framework. Hardware acceleration
was leveraged through the XNNPACK delegate for CPU execution, while theTIM-VX delegate was employed to offload
computations to the NPU. To explain the details of the delegates used, here is a breakdown of their functionalities and how they

impact performanceonthe Grinn AstraSOM-1680.

The XNNPACK delegate is designed to optimize Al inference on CPU-based systems. It enhances processing speed
by utilizing SIMD (Single Instruction, Multiple Data) techniques, which allow the CPU to handle multiple calculations
simultaneously. While this approach provides some acceleration over standard CPU execution, it does not take full advantage
of Synaptics SL1680’s built-in NPU (Neural Processing Unit). As a result, performance improvements are limited by the CPU’s
processing power, making XNNPACK a viable option only for lightweight Al models or cases where no dedicated Al

hardwareis available.

In contrast, the TIM-VX delegate is specifically designed to offload Al workloads to the NPU, significantly improving
inference efficiency. By leveraging Astra 1680’s dedicated Al acceleration hardware, TIM-VX allows for multiple times faster
processing compared to CPU-based execution. Additionally, offloading Al tasks to the NPU reduces CPU load,
enabling it to handle other critical functions such as data management and security protocols. This not only enhances system

performance but also optimizes power efficiency, as NPUs are specifically engineered to handle Al computations

with minimalenergy consumption.

When comparing the two, XNNPACK is suitable for scenarios where Al models are lightweight or where NPU support
is unavailable, while TIM-VX is the preferred choice for maximizing Synaptics SL1680’s hardware potential, ensuring real-time
Al inference and optimal resource allocation. If high performance, low latency, and efficiency are priorities, TIM-VX is clearly

the better option for Al workloads on this platform.

S GRINN wwwgrinn-global.com

The quantized model was generated using a representative dataset specifically created for ANPR. This dataset includes
real-world license plate images collected from various environments, ensuring that the model can handle diverse lighting
conditions, different plate designs, and varying angles. The quantization process improves inference efficiency while

maintaining high accuracy, making it well-suited for deployment on the Grinn AstraSOM-1680.

The core hardware utilized for this evaluation is the Grinn AstraSOM-1680, a compact yet powerful systemon-module
based on the Synaptics SL1680. This device is equipped with two cameras, enabling simultaneous recognition of vehicles
entering and exiting the facility. Unlike traditional setups that require extensive server infrastructure, this Edge Al-powered

solution processes all computations locally, reducing latency and eliminating the need for costly data centers.

Let’s see, based on the benchmark, which approach proves to be better and most optimal for real-time ANPR within

the constraints of Grinn’s Edge Al deployment.

3 Benchmark Results

This section presents the benchmarking results for Al model execution on the Grinn AstraSOM-1680, comparing
CPU-based inference using the XNNPACK delegate and NPU-accelerated inference using the TIM-VX delegate.
The tests were performed using the TensorFlow Lite Benchmark Tool, and the execution times were measured

to evaluate inference performance, startup behavior, and initialization overhead.

3.1 | CPU Execution (XNNPACK delegate)

Command Used:

benchmark_model --graph = yolovbs - int8 . tflite

Output:

INFO : Inference timings in us: Init : 39018 , First inference : 84116 , Warmup (avg):
82888.1 , Inference (avg): 82692.3

Analysis of CPU performance:

Initialization Time (39.02 ms) The initialization time includes model loading, memory allocation, and optimization

steps before the first inference. The CPU initialization is relatively efficient, completing within 39 ms.

First Inference Time (84.12 ms) This represents the time taken for the first run of the model after initialization. It is only slightly
higher than the average inference time (82.69 ms), suggesting that the impact of initial computations,
such as caching or memory optimization, is minimal. The CPU achieves stable inference times almost immediately, meaning

that additional optimizations in subsequent iterations have little effect on performance.

S GRINN wwwgrinn-global.com

Average Inference Time (82.69 ms per frame) The inference speed stabilizes at 82.69 ms per image during
sustained execution. This translates to 12 FPS (frames per second), which might not be optimal for real-time ANPR

applications.

The CPU with XNNPACK delivers solid performance; however, in real-time ANPR applications, its capabilities may be
limited as inference times exceed 80 ms per frame. This could impact the maximum achievable frame rate and introduce

slight delays in high-traffic environments.

3.2 | NPU Execution (TIM-VX delegate)

Command Used:

benchmark_model --graph = yolov5s - int8 . tflite -- external_delegate_path =/ usr/lib/
libvx_delegate .so

Output:

INFO : Inference timings in us: Init : 15294 , First inference : 2393143 , Warmup (avg):
2.39314 e+06 , Inference (avg): 11126.7

Analysis of NPU performance:

Initialization Time (15.29 ms). The NPU initializes significantly faster than the CPU, requiring only 15.29 ms.

This faster initialization reduces startup latency, making it ideal for low-power, always-on Al systems.

First Inference Time (2.39 s). The first inference is significantly slower at 2.39 seconds. This delay is expected due
to initial model loading, graph compilation, and internal memory allocation by the NPU. However, this overhead does

not affect subsequent inferences.
Average Inference Time (11.13 ms per frame). Once initialized, the NPU delivers an average inference speed

of just 11.13 ms per image. This translates to an effective frame rate of 90 FPS, which is more than sufficient for

real-time ANPR processing.

S GRINN wwwgrinn-global.com

4 | CPUvs. NPU Performance Comparison

Metric CPU (XNNPACK) NPU (TIM-VX) Improvement Factor
Initialization Time 39.02 ms 15.29 ms -
First Inference Time 84.12 ms 2393.14 ms =
Average Inference Time 82.69 ms 11.13 ms 8 x faster
Frame Rate 12 FPS 90 FPS 7,5 x higher

5 | NPU vs. CPU Power consumption

5.1 | Testing Methodology

The following methodology was applied:
Baseline Power Measurement: Power consumption in an idle state was recorded.

Inference Power Measurement: A fully quantized model was used to assess the NPU’s power consumption.

The evaluation was conducted using the following models:

YOLOv8n
Model NPU (TIM-VX)
YOLOv5s
YOLOv8n 2.00w
MobileNetV2 1.0 224
YOLOv5s 2.00w
MobileNetV2 1.0 224 2.39W

Execution Details: The model was executed using TensorFlow Lite (LiteRT) runtime.

Platform-Specific Delegates: Platform-specific delegate library was utilized to offload computations to the NPU.

The power consumption measurements confirm that the Grinn AstraSOM-1680 effectively executes fully quantized
models entirely on the NPU, with no fallback to CPU processings. The observed inference power consumption remained

within a low range, demonstrating the energy-efficient nature of the NPU:

YOLOv8n and YOLOvV5s operated at approximately 2.0W MobileNetV2 1.0 224 operated at approximately 2.39W

S GRINN wwwgrinn-global.com

The idle power consumption of 1.5W indicates that the platform maintains a low baseline power requirement, making it
suitable for continuous operation in power-constrained environments. The results confirm that the Grinn AstraSOM-1680
delivers fully NPU-accelerated inference with low power consumption (around 2.0-2.4W), making it a viable solution for
energy-efficient edge Al deployments requiring real-time processing. For comparison, running the same inference

on the CPU (without NPU) results in a significantly higher power consumption of 5.1W.

6 @ Key Findings and Recommendations

NPU provides a massive speedup. The TIM-VX delegate reduces inference time by nearly 8x compared to XNNPACK
on CPU, making it the optimal choice for real-time ANPR execution. A frame rate of 90 FPS ensures smooth, high-speed

processing of license plates, even in high-traffic environments.

CPU is not ideal for real-time inference. With an average inference time of 82.69 ms per frame, the CPU can only sustain
12 FPS, which is not sufficient for sesamless ANPR performance. High inference times introduce latency, making it challenging

to process multiple vehicles simultaneously.

NPU startup time is longer, but execution is much faster. The first inference on NPU takes significantly longer (2.39 s)
due to model compilation and hardware optimization. However, once initialized, inference time stabilizes at 11 ms,

delivering a huge boost in efficiency.

Power efficiency and resource allocation. Using the NPU reduces CPU load, allowing the system to allocate
computational resources to other critical tasks such as data storage, security protocols, and cloud integration.

Additionally, NPU-based inference is generally more power-efficient, making it ideal for Edge Al deployments.

7 Conclusion

Based on the benchmark results, the NPU (TIM-VX delegate) significantly outperforms the CPU (XNNPACK delegate)
in terms of inference speed and efficiency. While CPU-based inference can process only 12 FPS, the NPU can achieve 90 FPS,

making it far more suitable for real-time ANPR applications.

This advantage, however, comes with the trade-off of longer initialization time compared to CPU-based processing. While
the NPU significantly accelerates inference once fully operational, the initial setup involves additional steps such as graph
compilation and resource allocation. Despite this, the overall performance gain in real-time ANPR applications outweighs

these initial delays, making the NPU the optimal choice for handling high-traffic environments efficiently.

S GRINN wwwgrinn-global.com

Strzegomska 140A
54-429 Wroctaw
Poland

+48 71716 40 99

office@grinn-global.com

support@grinn-global.com

S GRINN

www.grinn-global.com

